Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer.
نویسندگان
چکیده
PURPOSE AND EXPERIMENTAL DESIGN The etiologic association and prognostic significance of mismatch repair gene/protein alterations have never been examined in nonsmoking lung cancer. Therefore, we investigated protein expression and promoter hypermethylation of hMLH1 and hMSH2 genes in the tumor specimens from 105 nonsmoking female non-small cell lung cancer (NSCLC) patients. Immunohistochemistry and restriction enzyme-based multiplex PCR were used to examine the protein expression and promoter hypermethylation, respectively. The occurrence of gene/protein alteration for each gene was compared with the patients' clinicopathologic variables as well as the overall survival and cancer-specific survival rates. RESULTS Protein expression alteration and promoter hypermethylation were observed in 66% to 67% and 30% to 34% of tumor specimens for hMLH1 and hMSH2 genes, respectively. Loss of hMLH1 and hMSH2 protein expression was significantly associated with their promoter hypermethylation (P < 0.0001 and P = 0.049). The overall survival and cancer-specific survival rates were significantly lower in patients with promoter hypermethylation of hMSH2 gene than in those without hypermethylation (P = 0.038 and P = 0.004). The poor prognosis was still especially significant in adenocarcinoma (P = 0.035 and P = 0.061) and early-stage NSCLC patients (P = 0.067 and P = 0.041). CONCLUSION Our data suggest that hMLH1 is the major altered mismatch repair gene involved in nonsmoking NSCLC tumorigenesis and that promoter methylation is the predominant mechanism in hMLH1 and hMSH2 deregulation. In addition, promoter methylation of the hMSH2 gene may be a potential prognostic factor in nonsmoking female lung cancer.
منابع مشابه
Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples.
We performed a genetic and epigenetic study of the hMLH1 and hMSH2 mismatch repair genes in resected primary tumors from 77 non-small cell lung cancer (NSCLC) patients. The molecular alterations examined included the loss of mRNA and protein expression as well as promoter methylation, and the allelic imbalance of the chromosomal regions that harbor the genes. We found that 78% and 26% of patien...
متن کاملThe clinicopathological significance of hMLH1 hypermethylation in non-small-cell lung cancer: a meta-analysis and literature review
The hMLH1 gene plays an essential role in DNA repair. Methylation of the hMLH1 gene is common in many types of cancer and can lead to the loss of hMLH1 expression. However, the association and clinicopathological significance between hMLH1 promoter hypermethylation and non-small-cell lung cancer (NSCLC) is elusive. Here, we investigated the correlation of hMLH1 promoter hypermethylation and NSC...
متن کاملMethylation of hMLH1 in a population-based series of endometrial carcinomas.
Microsatellite instability (MSI) is a characteristic feature of hereditary nonpolyposis colorectal cancer and is also observed in sporadic colorectal and endometrial cancers. Alterations in the mismatch repair genes hMLH1 and hMSH2 are important for the development of MSI. It has recently been demonstrated that hypermethylation of the hMLH1 promoter region is associated with MSI and appears to ...
متن کاملHypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability.
Recent studies have demonstrated the presence of microsatellite instability (MSI) in tumors from patients with hereditary nonpolyposis colon cancer and in a subset of patients with sporadic colorectal cancer (CRC). In sporadic CRC, three tumor phenotypes have been defined: microsatellite stable (MSS), low-frequency MSI, and high-frequency MSI (MSI-H). Although defective mismatch repair, consist...
متن کاملMechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1.
Fifteen to twenty-five percent of sporadic colorectal carcinomas are replication error (RER) positive. Because the frequency of mutations in the mismatch repair genes (hMLH1 and hMSH2) is low in these tumors, we have investigated the role of mutational inactivation, methylation of the promoter region, and loss of heterozygosity (LOH) as a possible explanation for the mutator phenotype of RER+ c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 11 15 شماره
صفحات -
تاریخ انتشار 2005